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Abstract

Training of surgical students has been the same for a long time; an expert surgeon observes
a trainee and assesses their skill. This has several disadvantages: The expert surgeon’s time
is very valuable, it would be more useful if they spent it doing procedures only they have the
ability to do, especially with the increased demand on health care services. Furthermore the
assessment is very subjective and not well standardized, each surgeon has their own style and
preferences. We propose that the optimal solution to this problem is an autonomous surgical
skill assessment system using Computer Vision and black box of Convolutional Neural Networks
to assess the trainees. Using a simple camera we feed a video of a student performing surgery
and, by tracking their hands, thumb and finger tips, we assess their skill level using metrics
derived from the current standard assessments, such as the OSATS, effectively evaluating the
trainee with no interaction from an expert surgeon, or anyone. This allows the trainee to not
only get fair and objective assessment but also allows the trainee to practice multiple times

without having to book time with an expert surgeon.
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1 Introduction

1.1 Motivation

In today’s world with advances in modern medicine it is imperative to train surgeons to the
highest standards. Currently the main method involves doctors in training being watched by a
professional and graded. This has a number of problems: The professional must take the time
to watch the students, this can be time consuming and so the professional may not be available
often meaning less training for the students and more time away from other important tasks
for the professional. Even if the professional records all of their students performing surgery,
to mark at a later date, it still takes a considerable amount of time and feedback will be
delayed. Moreover the scoring is rather subjective, every surgeon has their own style and so

two professionals may well disagree on what constitutes a good procedure.

Whilst there has been advances in recognizing actions in both images and videos, there have
been fewer in skill assessment and feedback reporting. The ability to measure ones abilities
and provide coherent and useful feedback is very useful, trainee surgeons would be able to
practice without supervision and get constructive feedback so as to reduce the amount of time
a professional would need to observe. Furthermore the assessment would be objective since the
system would be following a set of rules. We could even extend this to teach a machine how to

follow the same actions, entering the world of medical robotics.

1.1.1  OSATS

The OSATS (objective structured assessment of technical skills), are marked using a Likert
scale from levels 1-5. However only levels 1, 3 and 5 actually have values and even they aren’t
very explicit e.g. “majority of knots placed correctly”. Worse still some are not even distinctive,

“Knew all important steps” vs “Familiarity with all steps”.

The OSATS contain seven diverse components, for example “instrument handling’ (IH) is to
do with the fluidity of the movements where as “respect for tissue’ (RT) focuses on the object

of the operation.
All in all the OSATS do not seem to be all that objective and as shown in [1] there is a poor
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correlation between subjective and objective evaluations. They take a considerable amount of
time and are challenging to mark given the lack of detail in the criteria. This is especially

noticeable when compared with A-Level and GCSE mark schemes.

1.1.2 Currently proposed methods

There are currently several different methods out there to try to automate the OSATS and
other training methods; many focus on specialized mechanical devices and measure surgical
proficiency using metrics derived from these mechanical devices. There is also research looking
at using different types of sensors, both on the tools and the subjects, although these can be
intrusive. However cameras are a category of sensors too and this form of sensor is the area

this paper will focus on.

Whilst there seems to be growing excitement in using computer vision in order to assess skill,
not just in medical contexts but also in sports and photography, many require the use of either
minimally invasive equipment, specially coloured equipment such as gloves or suturing thread
or special markers on the standard medical gloves and tools, which can be a problem due to

the sterile environment necessary for some surgical tasks.

1.2 Proposed idea

The objective of this project is to create a vision system that causes little to no change to
the user, this would also allow extension into a real operating room since there is no change
necessary to the surgeon. Essentially the aim is for the trainee to do the assessment exactly the
same as if it was being recorded for their supervisor; however instead, at the end they would get
given their results by the program, consisting of a black box of Convolutional Neural Networks,
which will provide results in real or near real time. Once the student has stopped suturing the
system will automatically stop recording and display the results. This could include annotated
feedback for improvement and possibly a “Highlight reel” of what they did well and a negative
reel of what they did poorly so they can improve. This is similar to the work in [2] which
was applied to two Olympic sports, diving and figure skating. However we will focus solely on

surgery which has its own set of challenges. For example surgery is rarely whole body based

ITypical Likert scale: Strongly disagree, Disagree, Neither agree nor disagree, Agree, Strongly agree
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unlike diving and skating. Furthermore data also comes from interactions with the substitute
for the patient where as diving and skating, along with other sports, predominantly focus on

the performer themselves.

Initially we aim to focus on suturing and knot tying, these are both simple and essential skills
all surgical students must learn. Whilst it may be possible to then extend this to incorporate
other surgical procedures, it is far more important to master accurate skill assessment as this
would then form the basis of a general assessment framework, on which the process of learning

to assessing another procedure would become far simpler.

The most important aspect of this project will be data. Many surgical skill assessment systems
have gotten accurate classification results with data sets (people performing suturing/knot
tying) in the tens such as [1] which had only 18 participants but got results above 85% accurate
for its classification. However since we are not only classifying but also returning feedback,
a lot more data will be needed. That said expert data is exceptionally hard to come by as
professionals are busy enough, the whole aim of this project is to reduce that. Fortunately
suturing is a simple task and so I should be able to record myself multiple times in order to

create the dataset, improving as I do so creating the different skill levels required in a dataset.
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2 Background

2.1 Surgical Training

2.1.1 Overview

The core of surgical training has been the same since 1889 when Sir William Halsted introduced
a residency training system based on graded responsibility at Johns Hopkins Hospital [3]. Tt
is generally accepted that skill levels amongst surgeons varies due to teaching, training and

experience and that there is a causal link between surgical skill level and clinical outcome [4, 5].

Furthermore there appears to be a general trend in the increase in the number of surgeries each
year. In fact according to the U.S. National Center for Health Statistics; 40.3 million inpatient

procedures were performed in the US in 1996, which was increased to 45.9 million in 2005 [6].

Moreover from this population the Agency for Health care Research and Quality discovered
that in the year 2000 there were more than 32,000 surgery related deaths, costing 9 billion

dollars and accounting for 2.4 million extra days in the hospital [7].

Given these facts there are, unsurprisingly, consequential financial pressures on hospitals caused
by the increasing costs of malpractice insurance, surgical equipment, personnel salaries and the
cost of training residents [4]. On top of all this, there are labor laws limiting a resident’s work

week to 80 hours [8].

Therefore surgical students must learn a growing number of techniques and technologies while
having less time for hands-on experience, which when combined with the fact hospitals have

fewer funds to spend on increased training, is no mean feat.

In fact surgeons exiting the UK surgical training programme are now further lacking in expe-
rience and subsequently require more guidance during the first few years of their careers [9],
[10]. Furthermore [11] found that only 34% of surgical students believed they were receiving

enough training in basic skills.

This becomes problematic if trainees do not have the natural potential to reach adequate

competency in their specialty within a few years. In fact it has been argued that most surgeons
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do not ever become true experts and in order to gain expertise in surgery there is a need for
deliberate practice [12]. Consequently, a surgeon’s progression is contingent on a valid, but
unstandardized, selection process that and is almost purely based on academic achievement,

personal knowledge of the candidates and subjective referrals.

However there are many factors that determine the skill level of a surgeon such as knowledge of
the task, judgment / decision making and manual dexterity. Whilst the first two are currently
taught in a classroom and evaluated using written and oral exams [4], methods to standardize
technical skill level for teaching and assessment has been difficult [13]. Many surgical training
schemes are based upon Sir William Halsted’s training method of “see one, do one, teach one”
where students perform whilst being observed by expert surgeons [4], this however is time

consuming and is by no means a standardized approach to of assessing surgical skill [14].

The Intercollegiate Surgical Curriculum Programme (ISCP) attempts to standardize surgical
training by dividing the assessment into four domains: knowledge, judgment, technique and
professionalism [15]. They specify that all assessment methods during training should meet
the following criteria; they are to be valid (the complexity of the the given tasks increases
in proportion with the system), reliable (multiple measurements lead to the same outcome),
feasible (the results should be available within 5 to 10 minutes), cost effective, be open to

feedback and have an impact on the student’s learning.

If it is possible to combine surgical training with a valid, reliable and objective assessment
system we could then ensure that surgeon’s in training are fairly evaluated in a standardized
manner ensuring that hospitals can be confident that each trainee surgeon finish training with

basic competence which will result in a reduction of critical medical errors.

It was found that 85% of students were interested in innovative surgical training systems, how-
ever it was noted that there was a lack of time or resources for a training facility. Surprisingly
there have been few studies to addressed feedback in training methodologies, this has caused
difficulties for improvement of surgical training and performance [16]. Whilst opportunities for
learning through work with patients has diminished, there has been an increase in interest in
laboratories with a formal curriculum, specifically designed to teach surgical skills. This model
of surgical education focuses on teaching basic surgical skills using models and simulators, some
of which are discussed later, with the aim of better preparing students for the operating room

[5], [17, 18, 19, 20, 21].
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The Fitts-Posner Three-stage Theory of Motor Skills Acquisition.*
Stage Goal Activity Performance
Cognition Understanding the Explgnatlon, demon- Frratic, distinct steps
task stration
Inteeration Knowledge becomes | Deliberate  practice, | Increased fluidity, less
& motor skill feedback interruptions
' Perform quickly, Performgpce 'Wlth lit- Continuous, fluid,
Automation smoothly and pre- | tle cognitive input, re- )
) adaptive
cisely fine performance

Table 2.1: *Adapted from [5]

These training techniques are based upon the way in which motor skills are built and expertise
is developed. Fitts and Posner’s three-stage theory of motor skill acquisition is widely accepted
in both the motor skills literature and the surgical literature [5, 22, 23]. In the cognitive stage,
the student learns the theory of the task; performance is erratic, and the procedure is carried
out in clearly distinct steps. Using the process of surgical knot tying as an example, in the
cognitive stage the learner must understand the mechanics of knot tying, how to hold the tie,
how to place the throws, and how to move the hands. With practice and feedback, the student
will reach the integrative stage, in which the knowledge of the procedure is translated into
motor behavior. The student still has to actively thinks about how to move the hands and
hold the tie but is able to execute the task more fluidly, with fewer interruptions. Finally is the
autonomous stage, in which practice gradually results in a smooth performance. The student no
longer consciously thinks about how to perform the task and can concentrate on other aspects
of the procedure. However this still doesn’t aid in the task of objective skill assessment, only

in improving the quality of training.
2.2 Grading Systems

2.2.1  Objective Structured Assessment Of Technical Skill (OSATS)

The Objective Structured Assessment of Technical Skill (OSATS) is widely agreed upon as
the gold standard for evaluating surgical skill and has been successfully adapted to many
surgical specialities [24], [25, 26, 27, 28, 29]. The OSAT requires students to perform a series of
standardized surgical tasks on inanimate models under the direct observation of an expert [5].

Examiners score students using two methods. The first is a task specific check-list consisting of
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10 to 30 specific surgical manoeuvres that have been deemed essential elements of the procedure.
The second is a global rating form, which includes five to eight surgical behaviours, e.g. Respect

for Tissues and Economy of Motion.

There has been research already into the reliability and validity of the OSATS. Two different
forms of the OSATS were evaluated, one using live anaesthetized animals and the other using
bench model simulations. The evaluation found that bench models have the same level of

difficulty and are equivalent to using live animals in the testing of a trainee.

Unfortunately, even though the OSATS are widely accepted as the gold standard for assessment,
there are many prohibitive limitations. The examinations are expensive and still there is
the issue of the subjectivity of performance measures [30], [31], [32]. The high cost of the
examination comes from multiple factors including the cost of personnel, such as the professional
surgeon and the operators (either for the operating room, the simulator or whatever system is

being used) and the materials used.

This does not even begin to take into account the cost to the surgeon examining the trainees;
whilst examining trainee surgeons they are unavailable to perform or instruct in possibly more
complicated and/or vital surgeries. When the aim is to create a fully integrated and regular
assessment system, to evaluate a surgeon’s training, it is not feasible to require a large number
of expert surgeons for such a long period of time, even shorter periods are inadvisable given the

limited number of truly expert surgeons and the already high demand for their time elsewhere.

2.2.2  Procedure Based Assessment (PBA)

Procedure Based Assessment (PBA) is a modification of the OSATS which is currently being
used by the ISCP for training in all surgical specialities[15]. This system uses a surgical con-
sultant or someone of similar skills to assesses the professionalism and functional skills of the
trainee. Then a decision is made as to whether the trainee has performed to a satisfactory
standard. However the majority of the time the PBA is assessed by the trainee’s clinical super-
visor; this causes the assessment to firstly remain subjective and secondly, since the examiner
has prior knowledge of the trainees style and in fact trained the trainee themselves, can cause

the assessment not to be based completely of the examination itself.
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2.2.3  Global Rating Scale (GRS)

The Global Rating Scale (GRS) was created in order to assess surgical skill in a laboratory
environment. It has been shown to reliably assess performance on arthroscopic tasks [33], [34].
The GRS system consists of a blinded task-specific check-list and is assessed by an experienced
clinician. Paper methods, which encompass skill assessment systems such as this (GRS) and

check-list bases systems, have been widely used in real operating theatres [35, 36, 37, 38, 39, 40].

2.2.4  Fundamentals of Laparoscopic Surgery (FLS)

The Fundamentals of Laparoscopic Surgery (FLS) system is aimed at teaching and assessing
laparoscopic skills, it measures both the trainee’s cognitive and technical skill as well as pro-
viding an opportunity for trainees to practice basic laparoscopic skills [41]. In the US it is even
considered the gold standard for both teaching and assessment of a trainee. FLS involves 5

standard tasks, each of which are evaluated by two metrics, time and accuracy [42].

2.3 Automated Skill Assessment Systems (Mo-

tion Analysis)

Currently there are a number of systems being used to try and autonomously assess trainee
surgeon’s skill level. These systems are autonomous to varying degrees, they all obtain some
data about how the trainee performed the surgical task, however some still require an assessor

to look at the data.

Many of these systems fall under the “Motion analysis” category. These systems attempt to
objectively measure the trainee’s technical dexterity and monitor the learning curves for various
surgical procedures [43], [24], [44, 45, 46]. These systems clearly have an advantage over grading
systems that require the over watch of a trained professional such as the OSATS and the FLS
systems: They don’t require a supervisor at alll This means that expert surgeons can spend
less time assessing the trainees and focus on teaching and performing complicated surgeries
only they can do. Furthermore the automated assessment process is more objective, it returns

raw data only, and as such is a fairer way to assess surgeons [24].
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The need to have expert surgeons observe and assess trainees, giving up time that there may
be a greater need for elsewhere, is a huge hurdle in the hunt for an improved way to assess
trainees. Moreover the need for real time assessment, or close to (ISCP states that results

should be available in 5 to 10 minutes) has been recognized [47].

It has been suggested that instead of the expert surgeons watching a trainee perform the
assessment in person they can instead watch a recording of the trainee performing the same
task. This has many advantages, for example the expert surgeon can assess multiple trainees
without the need to wait for the assessment to be set up each time; they can watch the recordings
back to back, allowing them to assess more trainees in a certain time period. They can also
re-watch any elements of the recordings that may need closer analysis. Finally the assessment
process is also essentially blinded, the recordings can be taken without showing the identity of
the trainee and the assessor need not know the identity of the trainee, as is the case with almost
all written examinations. However, despite all these advantages, it is still a time consuming

process and prone to subjectivity, each surgeon has their own style and preferences in styles.

Systems that analyse dexterity from the trainee’s hand movements are quite popular, alone
they can perform solid analysis of requirements that are common to many grading schemes; for
example three of the OSATS categories (Time and Motion, Instrument Handling and Flow of
Operation) are straight forward to assess with such a system. However they cannot assess other
important requirements, again using the OSATS as an example, the following categories cannot
be easily assessed using hand motion analysis systems alone: Respect for Tissue, Knowledge of

Instruments, Use of Assistants and Knowledge of Specific Procedure.

A combination however, of motion analysis followed by a performance check-list assessed by
a qualified professional, though not necessarily an expert surgeon, is a possible solution that
would have the benefits of both the recorded assessment system described previously and the
motion analysis, resulting in a more objective manner that is also less time and resource, the

expert surgeon, consuming.

The following is a sample of the main systems for skill assessment that use motion analysis:
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2.3.1 Imperial College Surgical Assessment Device (ICSAD)

Hand motion analysis performed by the Imperial College Surgical Assessment Device (ICSAD)
[48] has been found to be an effective measure of of technical skill and surgical dexterity for
both laparoscopic [49] and open surgical simulation [45] [50, 51] and has been shown to have

good concordance with OSATS scores [5] [52].

This system uses an electromagnetic tracking system (Isotrak IT)and consists of an electromag-
netic field generator and two 10-mm electromagnetic trackers, attached to the dorsum of each
hand at the midshaft of the third metacarpal, which then are further secured to each hand by
the latex gloves worn by the user of the system. The system obtains the Cartesian coordinate
information from each tracker a 20Hz frequency and 1mm resolution. Individual movements of
the hands are found by a change in velocity and positional data is converted into parameters,
including the number of hand movements, the amount each hand moved and the time taken to

complete the procedure, and is used to measure performance [47], [45].

Unfortunately this system is limited to ex vivo benchtop models, described in the next section,
due to the fact neither the extraneous wires or markers can be used on the surface of the gloves
in live surgery [4]. Moreover this system is logistically difficult to implement in the operating

room [30], mainly because the electromagnetic field is prone to disturbance by ferrous materials.

2.3.2  Advanced Dundee Endoscopic Psychomotor Tester (ADEPT)

The Advanced Dundee Endoscopic Psychomotor Tester (ADEPT) [4] system has a potential
advantage over the ICSAD since it actively compares the performance of expert and novice
surgeons and as such performs an aptitude test instead of just returning evaluation metrics [52].
It performs motion tracking by reflecting infra-red light off sensors attached to the surgeon’s
arm. The system then applies trajectory analysis in order to obtain the positional data of these

SEensors.

However, there are many limitations to this system; there is the issue of line of sight, as is a
problem with all optical tracking systems, so it cannot be used outside of simulations. Moreover
simultaneous limbs cannot be tracked due to overlapping signals [4] and the difficulty of the

tasks that can be assessed is limited.
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Although the ADEPT system is perceived to be a valid system for assessing psychomotor
skills [53], participants in the study did not hold the system in high regard; Furthermore the

endoscopic setting used by this system is not similar laparoscopic environment used in practice.

2.3.3 Sensor Gloves

There is some development into a wireless sensor glove with the aim to assess surgical skill by
analysing hand movement made while performing laparoscopy. It uses hidden Markov models
(HMM’s), described later, in order to place the sensors in the optimal locations for a given set

of gestures [32]. However the current size of the sensors is an issue.

HMM'’s are well suited to coping with spatiotemporal features [32] and can find patterns based
of the location of the sensors in order to learn the optimal placement of the sensors to improve

the hand gesture classification.

2.3.4 ProMIS

The ProMIS simulator [4, 54] uses a passive tracking system. The instrument’s movements are
obtained from three separate cameras that capture the video of the internal movement of the
laparoscopic instrument from three different angles. This design allows for measurement of the
motions in 3D space. Standard laparoscopic instruments are covered with two strips of yellow
tape which act as markers for the camera tracking system. However the tracking system is
situated in a large mannequin and is therefore not easily portable. Whilst it comes with both a
real and a virtual environment, it cannot be used in an actual operation, however as discussed

above, in the training of junior surgical residence this is not such an issue. It also provides

force feedback.

2.3.5 Zebris Ultrasound System

The Zebris Ultrasound System [54] uses 3D ultrasound measurements in order to track the
3D coordinates as well as the rotation of miniature ultrasound transmitters attached to the
surgical instruments. It achieves this my measuring the relative location of these transmitters
according to three microphones that have a fixed location. Since the ultrasound transmitters can

be sterilized this system can be used in the operating room as well as with both box trainers
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(physical models) and virtual reality trainers. Due to the use of real surgical tools natural
physical feedback is present and since the system relies on these sensors and microphones

alone, along with the tools to attach them to, it is portable.

2.3.6 Hardware interfaces

Laparoscopic Surgical Workstation, Virtual Laparoscopic Interface and Laparoscopic Impulse
Engine are three well known interfaces for use with laproscopic virtual simulations [54]. These
are fully instrumented tools which allow realistic controls for use with the virtual environment.
Since virtual environments are cost effective compared to higher fidelity systems and lower
fidelity systems do not hinder teaching as much in junior residence, the use of realistic tools

further enhances the usefulness of this type of training.

2.3.7 Combinations of motion analysis with alternative analysis

systems

Combining other sensing systems with motion analysis could have an increased effect on the ac-
curacy of automated surgical skill assessments and further reduce such assessment from subjec-
tivity. For example by combining eye tracking with motion analysis one study has shown that,
surgical skill assessment accuracy was increased by 13.2% and 5.3% for expert and novice skill
respectively [55]. Using both types of analysis lead to important information about hand-eye
coordination being found. This enabled the system to evaluate OSAT metrics, such as Knowl-
edge of Instruments, which would not be possible by motion analysis alone. This increase in
the number of categories that can be autonomously determined by the system represents a step
further in removing the subjectiveness of skill assessment, when assessed by another person,

and decreases the overall time which requires an expert to assess the trainee.

2.3.8 Evaluation Metrics Used

The following table shows the evaluation metrics used by some of the systems described above

as well as the OSATS for comparison:
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Types Of Simulators.*

Simulation Advantages Disadvantages Best Use
Acceptance by trainees;
Cheap, portable, pramice by ¢ ' | Basic skills for novice
Bench models .. . low fidelity; basic tasks, . .
reusable, minimal risks . learners, discrete skills
not operations
. . . Cost, special facilities | Advanced rocedural
High fidelity, avail- P . P
- . and personnel required, | knowledge, procedures
. . ability, can practice . . . . .
Live animals . . ethical concerns, single | in which blood flow is
hemostasis and entire . . . . .
. use, anatomical differ- | important, dissection
operations .
ences skills.
High fidelit onl
B & » % wy o . Advanced  procedural
true” anatomy sim- | Cost, availability, single . .
. . knowledge, dissection,
Cadavers ulator currently, can | use, compliance of tis- .. .
. . . . . continuing medical
practice entire opera- | sue, infection risk .
. education.
tions
Reusable, high fidelity, | Cost, maintenance, .. ..
Human performance . . .. Team training, crisis
. data capture, interac- | and downtime; limited
simulators .. « . .. management.
tivity technical” applications
Cost, maintenance, and . .
downtime; acceptance Basic laparoscopic
Virtual reality surgical | Reusable, data capture, . P . | skills, endoscopic and
. .. . by trainees; three di-
simulators minimal setup time . . transcutaneous proce-
mensions not well sim- .
dural skills.
ulated

Table 2.2: *Table from [5]

2.4 Models

There are a variety of models to use when training surgeons. For the simulation of living
human tissue and anatomy, inanimate models, virtual reality, live animals and human cadavers
are used. For critical-incident and team training high-performance patient simulators can
also be used. Although human cadavers most closely approximate reality, their cost, limited
availability and the poor compliance of cadaveric tissue limits their use. Using live animals
is also difficult due to the ethical concerns, high costs and the need of specialized facilities.

In contrast, inanimate models are safe, reproducible, portable, readily available and generally

more cost-effective than animals and cadavers.

Advances in virtual reality technology have a huge potential for enhancing surgical skills train-
ing, and many virtual reality systems are now commercially available. Virtual reality provides
the opportunity for very detailed feedback and may allow for more subtle measurement of the
student’s performance than would be possible to measure by an expert observer [51]. Further-

more measures of precision and accuracy as well as error rates can be calculated easily. Two
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Types Of Simulators.*
Simulation Advantages Disadvantages Best Use
Acceptance by trainees;
Cheap, portable, pramice by ¢ ' | Basic skills for novice
Bench models .. . low fidelity; basic tasks, . .
reusable, minimal risks . learners, discrete skills
not operations
. . . Cost, special facilities | Advanced rocedural
High fidelity, avail- P . P
- . and personnel required, | knowledge, procedures
. . ability, can practice . . . . .
Live animals . . ethical concerns, single | in which blood flow is
hemostasis and entire . . . . .
. use, anatomical differ- | important, dissection
operations .
ences skills.
High fidelit onl
B & » % wy o . Advanced  procedural
true” anatomy sim- | Cost, availability, single . .
. . knowledge, dissection,
Cadavers ulator currently, can | use, compliance of tis- .. .
. . . . . continuing medical
practice entire opera- | sue, infection risk .
. education.
tions
Reusable, high fidelity, | Cost, maintenance, .. ..
Human performance . . .. Team training, crisis
. data capture, interac- | and downtime; limited
simulators .. « . .. management.
tivity technical” applications
Cost, maintenance, and . .
downtime; acceptance Basic laparoscopic
Virtual reality surgical | Reusable, data capture, . P . | skills, endoscopic and
. .. . by trainees; three di-
simulators minimal setup time . . transcutaneous proce-
mensions not well sim- .
dural skills.
ulated

Table 2.3: *Table from [5]

prospective trials have demonstrated that students who have been trained on low-fidelity, not
very lifelike, virtual reality models, e.g. laparoscopic box trainers, make fewer intraoperative
errors when performing a laparoscopic cholecystectomy than students who have not had simula-
tion training [56, 57]. High-fidelity (lifelike) virtual reality models are also available for training
in procedures such as colonoscopy and carotid artery stenting [58]. An FDA (Food and Drug)
administration panel recommended the use of virtual reality simulation as an integral compo-
nent of a training package for carotid artery stenting [59]. Unfortunately the higher the fidelity,
i.e. the more realistic the model, the more expensive and so there are many studies needed to
determine the worthwhile of using such systems. Fidelity may be less important at relatively
junior levels of training however. For example, when a group of medical students was trained
using a high-fidelity-video endoscopic urology system and another with the use of a simple
bench model, the two groups showed the same improvement in performance and both showed
more improvement than the control group (given didactic training) [60]. Furthermore, among
first-year surgical residents, improvement in a variety of open procedures has been shown to be

the same regardless of whether low-fidelity bench models or cadavers have been used [61].
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2.5 Machine Learning Algorithms

There are many famous Machine learning (ML) algorithms for use with vision systems. The

following is a basic overview of some of the most common ones.

2.5.1 HMDMs

Hidden Markov Model’s are statistical Markov models that assumes the Markov property, that
future states of the model depend only upon the current state and not of those of past state,
that is to say it is a memoryless (stochastic) process. For a system to be a HMM it needs to be
autonomous and have the state be only partially observable, this often manifests as not being
able to directly observe the state changes but can observe their affect. For example say there
are three possible state, {Go to the pub, Go clubbing, Go home} which depend upon a coin
toss with a trick coin. If the initial ”start” probabilities of the coin toss are known (since there
is no previous state a beginning state must have know probabilities) to be 0.6 for heads and
0.4 for tails and the probability that the previous state {Heads, Tails} will be repeated is 0.7
and change is 0.3 (the transition probability). Then, assuming knowledge of the probability of
each state, {Go to the pub, Go clubbing, Go home} given the outcome of the coin toss (the
emission probability), by observing this state one can use this data (Modeled as an HMM since

the actual coin toss is unobserved / hidden) to statistically find the result of the coin toss.

2.5.2 BoF/ BoW

Bag of Features/Bag of Words for computer vision tasks comes from Bag of Words for natural
language processing. In the original context, text was in an unordered collection and each
unique word would have a count of occurrences. This then forms a histogram which is used to

generate features for learning.

For BoF /BoW for images there are these main steps: Firstly to extract the features, this can
be done by feature detection algorithms such as Harris corner detection, Shi-Tomasi corner
detection or scale-invariant feature transform (SIFT). Given these features we then need to
represent them, if we use SIF'T we are left with a 128 dimensional vector. Given these features

9

it is then necessary to convert them to "words” so we can form a histogram as with the
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original method. One popular way to do this is use the K-means clustering algorithm, discussed
below. Each “word” used is defined to be cluster centre and by applying k-means each feature
representation will be assigned the word corresponding to their cluster. This word is also known
as a codevector. The set of “words” (also called the vocabulary) is known as a codebook. The
image, or frame of a video, can then be represented as a histogram of these “words” /codevectors.
It is vital to choose the correct vocabulary size since if this is too small there will not be enough
words to be representative of all the features. However too many words will cause overfitting,
a big issue in Machine Learning where the model fits the training data so well but performs

poorly on data not used in training.
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3 Convolution Neural Network: Hand

Tracking

In this chapter we will cover the creation of the Convolutional Neural Network (CNN) that is
used in this project in order to track the hands of the trainee surgeon during assessment. We
wanted to actually contribute to the field of hand tracking in general and as such have moved
away from more common approaches. The input to the CNN is a two dimensional grayscale
image, as opposed to the majority of current systems out that use coloured images, some of

which also rely on three dimensional images.

Please note that a lot of the Tensorflow references in this report apply to the lower level
counterparts of the api’s we used and so the parameters may appear different. In general we
used features from the tf.layers module but often the technical details are documented in the

equivalent tf.nn module.

3.1 CNN Inputs

3.1.1 Dataset Generation

The final dataset comprises of 8,174 images, 8,000 for training and 174 for evaluation. Orig-
inally there were 11,000 images, 10,000 for training and 1,000 for evaluation. This dataset
comprised images of no hands, one hand (with and without a glove) and both hands (per-
forming suturing and gloved); however such a varying dataset with multiple noisy backgrounds
cause terrible detection in unseen examples (overfitting). For a more detailed explanation see
the Evaluation Chapter 7. Therefore the final dataset contained images solely of the suturing
and knot tying procedure which occasionally included hands going in and out of shot, meaning
that the background was always the same and hands naturally went in and out of focus thereby
generating data with both, one or no hands. We generated the dataset using a vision system
to locate the hands in each image and manually assessed the validity of the segmentation, we
reviewed approximately 16,000 images one by one to generate both datasets (the initial one of

11,000 and the final dataset of 8,174 images). The vision system used to generate the dataset
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is documented in chapter 4

Figure 3.1: Input Images For The Hand Detection CNN

3.1.2  Feature/Input Set

CNN'’s, when used to learn vision based tasks, typically take each pixel channel in the image
as an input. This results in the input space being equal to ImageHeight * ImageWidth *
NumberofChannels where the width and height are in pixels and the channels is usually
either three or one, three channels is typically for colour images (i.e. RGB, HSV etc) and one
channel is for grayscale (four channels is common with three dimensional images for example,
where the fourth dimension is depth of the pixel). This limits the size of the image that can
be used to train a CNN since large images would necessitate far too many input neurons for
most computers. Typical image sizes are 32x32 pixels and 28x28, for example CIFAR-10 and
MNIST respectively, however both those examples are for classification and as such only return
a category, either a plain integer or a string category name identified by an integer. Therefore
the input image size is not as important; the correct classification is not dependent on the
image size itself, a picture of a dolphin is a picture of a dolphin whether it’s at 4K resolution
or 32x32 pixels. Where as for the style of regression used for this task image size was crucial.
Whilst hand tracking as a classification task was more appealing, since we could get information
about the probability of a hand’s location at a certain pixel, it was more natural to treat it as

a regression problem, returning the top left coordinates in Cartesian space and the width and
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height of the rectangular bounding box surrounding the hand. Therefore the image size was

important since up-scaling can cause the hand locations to get re-mapped incorrectly.

As stated above this system uses gray scale images, which makes it more useful than methods
which require colour since it is now colour invariant and as such trainee’s using the system
need not be concerned with the colour of the gloves being used. However there is an additional
advantage for the CNN; only having one channel reduces the size of the input neurons resulting
in faster training and allowing for bigger input image sizes. The final image size chosen was
320x180, which is small enough to work well even on a laptop. It also set the required aspect
ratio at 16:9, which is the standard aspect ratio nowadays, webcams and modern phone cameras
tend to show in 720p or 1080p both of which are 16:9 aspect ratio. This is important since
downscaling the image is simple if the aspect ratio is the same, otherwise padding and/or
cropping would be required, so as to not distort the original image when scaling it to fit the
input size, which could cause the hands to be cut out (cropping) or reduce the size of the hands
in relation to the size of the image (padding). Since we wanted the input images to be captured
easily, without the use of specialized equipment, using the aspect ratio that is the standard
for both mobile phones and webcams means that capturing the trainee performing surgery
requires little concern. The secondary aim of this system, after being an automated surgical
skill assessment system, is to require as little change to the standard system as possible; all
the focus should be on performing the exercise not to how to integrate this system into the

exercise.

3.1.3 Labels/Outputs

For the labels, and by extension the outputs, it was decided to use a 2x4 matrix (i.e. two vectors
of length four) where each column represents the bounding box of one hand (or all zeros for no
hand). The representation is as follows, the x and y coordinate of the top left of the bounding

box, the width of the box and the height. E.g.

hand 1 hand 2
Xtop left Xtop left
hand 1 hand 2
Y;op left )/top left

Widthhand 1 Widthhand 2
Heighthand 1 He?:ghthand 2
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Whilst it would’ve been preferable to have made this a classification task, where each pixel
either belongs to the hand or not, since then we could have the probability of whether a given
pixel belongs to the hand, this way the output space is far smaller, 8 elements instead of the
same as the input space. Furthermore we can use padding of the bounding box (add two pixels
on all sides of the box) in order to account for possible inaccuracy, as an alternative to using
pixel probabilities, and we can average out the output over a set number of frames in order
to improve stability between frames. Since this system is mainly to simplify the task for the
next system, Tip Classification, it doesn’t matter if this system over predicts, whereas under
prediction would be a problem. Finally it allows for far easier manipulation of the label given
the randomizations applied to the training data and if the output data is used for a different

use to the standard pipeline for this system, it is more customizable to allow for this.

3.2 CNN Model

The Convolutional Neural Network used for this Hand Tracking task contained 5 layers in
between the input and output; however for some of the intermediate models used when designing
the final one for use, two extra layers where used. These were eventually removed as they did not
largely change the output results and slowed down the training procedure, however they may

still be useful if the design of the overall system changes and so will be discussed nonetheless.

Figure 3.2 shows the intermediate layers between input and output, note the arrows skipping

over the two optional Local Response Normalization Layers used to show that the layers nay

not be used.

Densely
Connected
Layer

Convolutional
Layer

Optiona
Local

Response
Normalization
Layer.

Convolutional
Layer

Normalization
Layer.

Figure 3.2: Hand Tracking CNN Model Layout
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3.2.1 Input Preprocessing

Before the input image is sent to the CNN for training it is first normalized, sometimes referred
to as standardized as it is in TensorFlow’s api. This linearly scales the input image to have
zero mean which helps to generalize the training data in order to reduce effect of brightness
and contrast that would differ from scene to scene, where scene is the sequence of images being

given as input to the CNN.

Normalization is applied by replacing each pixel with the following function:

(xom'ginal - ,U/)

O adjusted

wnew

where p is the mean of every pixel, y = % > i pizel; = pmelﬁp”efﬁ tpizely ip the image and

Oadjusted 15 the following function:

1
\/#pz':vels)

O adjusted = max(a,

Eﬁil (pizel;—p)?

N1 , but is

where o is the standard deviation of every pixel in the image, ¢ =
capped away from zero in order to prevent division by 0 in the case of uniform images. Max
picks the largest of its two inputs and #pixels is the number of pixels in the image, in this case

Hpizels = 320 x 180 = 57, 600

For some of the older models, during training only, the images had two possible preprocessing
transformations, being flipped horizontally and being flipped vertically, each of which were
applied with 50% probability one after the other which allowed for increasing the observed size
of the dataset. This caused some issues by increasing the variance in the data and including
images that are unlikely to ever occur such as upside down hands. A solution for this was
to include it after tens of thousands of steps of training over the original dataset had already

occurred.
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3.2.2 Convolutional Layers

Convolutional layer’s take as input a three-dimensional array with x two-dimensional matrices,
sometimes referred to as feature maps, each of size m by n. In this case x is 1, the number of
channels, m is 180, the height of the image, and n is 320, the width of the image. Keep in mind
that whilst one usually refers to an image as width by height, the height on an image is actually
the number of rows and the width is the number of columns; since matrices are referred to in

row by column form we will treat images in the same way.

For example with a standard colour, RGB, image of size 3 by 2 the input would look as follows:

Rediy Redys Redis| |Greeny; Greenio Greenis| |Blue; Blueiy Blues

Redsy Redys Redys| |Greeng; Greengs Greengs| | Bluesy Bluess Bluegs
Where for Channel, ., Channel is the image channel, r is the row and c is the column.

The output is another three-dimensional matrix, an m by n matrix where each value is a vector
of length k, where k is the number of filters to use. Technically the output need not be m by
n (the same dimension as the input image) since convolution kernels treat the edges of images
differently depending on what is specified, however in this case it is always the same dimensions
as we specified the Convolutional Layer uses the same padding for output as was received by
the input. Each filter has a size or kernel of dimension u by v by w, where u and v are the
dimensions in two-dimensional space and w is like a skip for multi channel images, i.e. with an
RGB image if w is 2 then only the red and blue channels get filters applied and G is skipped,
in this case we used a kernel/filter size of 5 by 5 (by 1 though this is implied since the input

image only has one channel).

An example output based on the example input described above with 2 filters (i.e. k = 2)

would be:
7Ry R, R R R

A A AN
Where for F)', F is the filter value, r is the row, c is the column and n is the filter number.

The Convolutional layer computes the output element F using the equation F* = W7 ;. . +b°
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where s is the filter number and is between 1 and k, W is the weight, r and ¢ is are row
and column respectively, x is a pixel, x is a function that does the two-dimensional discrete
convolution between W and x and b is the bias, although bias is not used in this model (bias

= 0).

Essentially a Convolutional Layer tries to learn the optimum weights, and bias but not in this
model, in order to create the optimal convolution kernel, of dimensions given by the kernel size

(in this case 5 by 5).

The model used for the task of hand tracking used two Convolutional Layers as shown in the
diagram at the beginning of this section 3.2. Both layers used a kernel size of 5 by 5 and didn’t
skip any channels (i.e. kernel size was 5 by 5 by 1). The first layer taking the model’s input
directly returned 32 filters and the second Convolutional Layer used after the first Max_Pooling
Layer, or in some earlier cases the Local Response Normalization Layer, applied 64 filters. These
are rather standard number of filters, the CNN tutorial for MNIST on Tensorflow used the same
number of filters and the CIFAR-10 tutorial used 64 for both filter numbers. 32 was chosen for
the first layer since 64 didn’t make much difference and was slower to train and 128 filters was

far too many.

3.2.3 Pooling Layers

Pooling layers are used to down sample the input image. Since the first Convolutional Layer
creates 32 filters it becomes imperative that we reduce the number of inputs/neurons to the
next stage or else we will have too many inputs and the system will either crash or train far

too slowly.

Max Pooling is one of the pooling strategies that reduces the number of neurons. As the name
suggests it looks for the maximum value and keeps that whilst discarding the rest. A pooling
layer has three important parameters, the size, the stride and the padding. The padding, as
with the Convolutional Layer was set to be the same so that the aspect ratio is the same, for
cases where the pool size doesn’t fully fit into the actual input size. The two Pooling Layers
used have a pooling size of 4 by 4 and 5 by 5 respectively and both have the same stride as
pooling size, i.e. the pooling only considers each area of pool size once. Therefore the first

Pooling Layer, which occurred after the first Convolutional Layer, has an input of 180 by 320
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by 32, Image Height by Image Width by Number Of Filters, and so quarters this to 45 by 80 by
32, since Max Pooling doesn’t affect the number of filters, it just chooses the maximum filter
for each section. The second Pooling Layer occurred after the Second Convolutional Layer, or
after the Local Response Normalization Layer however since that doesn’t change the number
of neurons it is inconsequential to the Pooling Layer. It therefore receives an input of 45 by 80

by 64, since the second Convolutional Layer has 64 filters, and returns a size of 9 by 16 by 64.

An example of a 2 by 2 Max_Pooling Layer with a stride of 2 operating on an input of 4 by 4
by 1 would result in the following 2 by 2 by 1 matrix:

(15 12 14|
89 7 6| |9 1
32 8 5 18| |32 18
17 32 12 5 |

Another 2 by 2 Max_Pooling Layer with a stride of 2 on an input of 2 by 2 by 2 would result
in the following 1 by 1 by 2 matrix:

[5 18] [12 5} ZHZS 18“

[7 14] [28 16}

3.2.4  Local Response Normalization (Lrn) Layers

A Local Response Normalization (Lrn) Layer can be very useful as it allows one to normalize
the inner most elements of a matrix, reducing the affect of variance in the photos, however

since we already standardize/normalize the images this is rather redundant in this case.

The three-dimensional matrix is treated as a two-dimensional array of vectors, in this case the
vectors are the various filters for that pixel. Each vector is then normalized independently of the
others by dividing the vector by the weighted squared sum of the elements in the vector within
the depth_radius, which is a parameter of the Lrn Layer. The Lrn Layer also has parameters
for bias which is kept positive to avoid dividing by 0, an alpha which is used as a scale factor

and a beta which is used as the exponent.
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The Lrn Layer uses the following functions: [62]

Norm_Vector = input_vector /(bias + alpha x sqr_sum)*™
Where Norm_Vector is the normalized output vector which replaces the input_vector and

sqr_sum is:
m-+d

sqr_sum = E i2

i=m—d

Where m is the middle of the vector and d is the depth_radius.

For both the Lrn Layers we used depth_radius = 4, bias=1.0, alpha=0.001 / 9.0 and beta=0.75.

3.2.5 Dense Layers

The Dense Layers are what most people would associate with a standard Neural Network. Each
neuron in the layer (in this model we used one layer with 1,024 neurons) is connected to every
output from the previous layer (in this case the second Max Pooling Layer). Every output

in the previous layer is multiplied by different weights before being input to the Neuron i.e.

Xo Wo
X4 Wy
Xo Wa
. = Neuron_Input
X3 Ws
XN Wi

where X7 is the Z output of the previous layer and W is the weight associated with the neuron

applied to X

It is these weights that the layer learns. Further more we decided to include a bias term,
Tensorflow makes this optional but it did increase the models accuracy, however it is not used
in the Convolutional Layers. The bias is usually defined by adding an input (or output of the
previous layer depending on the way you look at it) called Xy which is usually defined as 1 and
so the corresponding weight W) is the actual bias term that is learnt. Essentially the output of
each neuron in a layer is outputs = ¢(inputs - weights + bias). Note that since the weights and

the inputs are combined with the dot product and the bias is X - W where X is 1 then the
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X1 |41
output is output = ¢(| * | - | * | + Wy) Where ¢ is the activation function, for this model
XN Wi

we use the relu activation function, for more details see the activation functions section 3.2.6.

Inputs Weights Neurons Outputs

Wy .y )= Neuron | —————  ¢(X - Wy )

Xo
X4

_ X _
Input (X) = Xz W¢ v »——— Neuron 2 ———  o(X - W2 )

XN

wy v »>—— Neuron N —m8 ™ — H(X - We x)

Figure 3.3: High level view of a Dense Layer

Figure 3.3 shows a Hight level overview of the Dense Layer where ¢() is the activation function
_WOZ_

wy

Wy

relu in this system), X is the input vector, WZ  is , Z is the Neuron that weight
\k P 0..N g
Wi

Wi
vector belongs to and W, is the weight that is applied to input y. Note X is the bias term
and W, is the weight corresponding to the Bias. Usually X is set to 1 and the Bias is just the

value of Wj.
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3.2.5.1 Dropout

Dropout is a type of regularization, for more types of regularization look at section 3.2.7,
that allows us to avoid overfitting by dropping a percentage of the outputs from the neurons
belonging to the layer that dropout is applied to. For this model we chose a dropout rate of 0.4
meaning that 40% of the neurons output 0 (i.e. don’t output) and the remaining 60% output
their original values scaled by m (in this case 0—%) in order to keep the expected sum

the same as without dropout [63]. Dropout is only applied in training, as with all regularization,

and so is disregarded in prediction and evaluation of the system.

3.2.6 Activation Function/Non Linearity Layer

Most CNN’s have a Non Linearity Layer that only contains a pointwise function, most com-
monly the rectified linear unit (ReLU) [64] which is what we used for both the Convolutional
Layers and the Dense Layer. The function essentially clamps the output of a neuron between
0 and positive infinity, i.e. relu(z) = 2™ = maz(0,z). It has strong biological motivations and

is, as of 2018, the most popular activation function for deep neural networks [65].

3.2.7 Regularization

Regularization is a process of adding a penalty to the optimizations applied by an Optimizer,
a few of which are talked about section 3.2.8, in order to fight against overfitting. Overfitting
is where the system can predict, very accurately, on the training data but is poor at predicting

new unseen data.

There are two very common regularization functions in Machine Learning called L.L1 Regular-
ization (Lasso Regression) and L2 Regularization (Ridge Regression). For this model we tried
using the L2 norm in both the normal way (as a penalty to the loss function) and tried both
regulizing the weights in the Dense Layers and in the Convolutional layer and just in the Dense
layer but not in the Convolutional Layer. However we noticed no difference in the reduction of
overfitting, most of reduction in the overfitting came from reducing the variance in the training
data as explained above. Generally speaking 1.1 regularization is A x |3| where as L2 regulariza-
tion is A x 32 where 3 is a function and \ is a hyperparameter that controls the importance of

the regularization [66]. When using L2 regularization with the loss in TensorFlow we calculate
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L' = L+ X x |w||} where L' is the new loss, L is the current loss, w are the weights and
[ll2 is the L2 Norm ie. jllw|3 = 3(wi + wi + wi + --- + w?) [67], note one often see this
with a summation after the A since it is part of the loss, however as TensorFlow calculates this

iteratively (for each batch) the summation happens automatically.

3.2.8 Optimizers

Optimizers are how machine learning algorithms update themselves to become more accurate
and learn. There are many optimizers out there however after trying a few we still found
the standard Gradient Decent algorithm was the best. The following sections go over three

optimization algorithms briefly.

3.2.8.1 Gradient Decent

Gradient Decent works by calculating the gradients of the weights in the network with respect
to a loss function and updates the weights in the direction given by the gradient that results
in the minimization of said loss function. Throughout our work we used the Mean Absolute
loss, as opposed to the Mean Squared loss which caused issues with the way the system was

implemented.

Using the basic example of house prices where given a house size x we want to predict the house
prices y. If we aim to predict this with a straight line of best fit (y,r.a = ma + ¢ where yp,eq
is the predicted y from our system) then we want to optimize weights m and c. Starting with
random m and c¢ we calculate the loss for all our training examples, in our case we used Mean
Absolute loss (MAL) w where N was the number of examples. Note that when
Mean Squared loss is used we usually multiply the loss by % so that the square term cancels

when calculating the derivative.

SMAL and SMAL
om dc

We then calculate the gradients and then update the weight using the following

SMAL
dw

formula w = w— x learning_rate where w is the weight, i.e. m or ¢, and the learning rate
is a variable of the optimizer that relates to the size of the change in the weights, for this
model we used a static learning rate of 0.001 as it worked better than a variably decaying rate
and better than any other value (values of the learning rate should be kept small for Gradient

Decent). [68]
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3.2.8.2 ADADELTA

The ADADELTA optimizer is that dynamically adapts its hyperparameters (the learning rate
etc) over time using only first order information and also has only minimal additional overhead
when compared with the gradient descent optimizer [69]. Whilst this is very useful as finding
the best learning rate manually relies solely upon trial and error, in practice it did not cause any
improvements for this particular model. In fact, even though the extra overhead is minimal,
since the optimizer did not significantly improve the model as opposed to Gradient Decent, the

overhead was not worth it.

That is not to say ADADELTA was not good, however since the purpose of this project was
not to find the optimal system but to create the system in the first place, which could then
be optimized in future works, there was not time to experiment further with ADADELTA;
however it may well turn out that ADADELTA would become superior if it had been given

longer training.

3.2.8.3 Adam

The Adam Optimizer is another optimizer which is invariant to diagonal rescaling of the gra-
dients and is useful for problems which have a large amount of data, such as this problem
since the images used were larger compared to what is conventional, and/or a large number
of parameters [70]. However again this optimizer did not improve the system over Gradient
Decent. In fact, although [70] states that “The hyper-parameters have intuitive interpretations
and typically require little tuning” we found that they were not so simple; of course again it is
worth mentioning that since the point of the project was to build the system and not optimize
it (especially since this part of the project does not contribute as much to the field, since there
are many hand trackers out there, and only acts to allow the next part of the project: Finger
Tip Tracking) we did not try a large number of different hyperparameters, since Adam has
four hyperparameters the number of different combinations makes the manual finding of these
parameters quite difficult. Furthermore whenever Adam was used the system predicted the
exact same location for every single hand and so was unusable for this system, however this

again could be to do with the choice of hyperparameters.
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3.2.9 Losses

There are two Loss functions that are already made to be used with Tensorflow: Mean Squared
Error and Absolute Difference. Both of these methods are exactly the same as their Evaluation
Metric counter parts which we talk about in the next section so we won’t go over what they
do yet, if you want to read ahead they are covered in section 3.2.10, 3.2.10.2 and 3.2.10.3
respectively. For this model we used Absolute Difference, whilst my particular preference is
with Mean Squared Error given that it penalizes larger errors, this loss metric gave better
results with the Gradient Decent optimization, most likely due to the very large errors we were

getting at the beginning.

These loss functions do differer from their evaluation counterparts by allowing the use of a
weight parameter to scale the loss, either for the entire batch or specifically for each element
in the batch. Using this it may have been possible to improve the system to allow the Mean

Squared Error Loss.

3.2.10 Evaluation Metrics

When evaluating a CNN there are multiple types of metrics that one can use. They each
have their own particularities in the information they give but essentially amount to the same
thing. As such TensorFlow calculates them all in a very similar manner but with differences
in the underlying function used. Additionally since we use regression there is no need to apply

additional functions, these metrics are all we need.

All the metrics have two local variables, the total and the count that are used to compute the
various error metrics. The average can be weighted by weights, however for this system we did
not use any. The system then applies the specific metric function to the total divided by the

count.

3.2.10.1 Root Mean Squared error (RMSE)

The standard Root Mean Squared error function is:

\/sz-vo(empectedi — actual;)?
N
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Where N is the number of elements being evaluated expected; is the value of the label for that

element (the actual answer/ground truth) and actual; is the value we got.

However TensorFlow accumulates the total by adding the squared difference for every element
in the batch. This effectively computes (3.1 (expected; — actual;)?) but does so in batches
so that the evaluation metric can be found for each mini batch. It then divides by the count
(N) and applies the square root essentially performing the standard function. All Tensorflow
metrics described in the rest of this report work in the same way so we won’t go through it again
but each metric calculates its specific function in batches by accumulating total and dividing

by count to get the mean.

The Root Mean Squared error is a perfect mix of the Mean Squared error and the Mean
Absolute Error. We will go over both of the other metrics’ pros and cons in their own sections
however the Root Mean Squared Error has the advantage by being in easy to visualize units,

like Mean Absolute error, but also penalizes larger errors, such as Mean Squared Error.

3.2.10.2 Mean Squared error (MSE)

The standard Mean Squared error function is:

Zﬁio (expected; — actual;)?
N

Where N is the number of elements being evaluated expected; is the value of the label for that

element (the actual answer/ground truth) and actual; is the value we got.

The Mean Squared error penalizes larger differences between the expected and the actual, since
the difference is squared. This is very useful for getting a better idea of how well the system
is working as we will show in the evaluation of these metrics. Unfortunately by squaring the

differences the results are far larger error numbers, which aren’t easy to visualize.
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3.2.10.3 Mean Absolute error (MAE)

The standard Mean Absolute error function is:

SN (lexpected; — actual,])
N

Where N is the number of elements being evaluated expected; is the value of the label for that
element (the actual answer/ground truth), actual; is the value we got and |z| is the absolute

function (i.e. for x <0 z = —1 x x otherwise z = z).

The Mean Absolute Error uses easy to visualize units, it is literally the distance between the
expected and actual value. However it doesn’t penalize larger differences and as such a system
can seem more accurate than it is since the error may not seem so large, especially if it is mostly

accurate with only a few outliers.

3.2.10.4 Evaluation Metrics Comparison

The various evaluation metrics all have particular pros and cons, for example let us look at a
system that has a systematic or constant absolute error of 6 except for one which is out by 11.
This error of 11 will effect the different evaluation metrics differently, since it essentially has

different weightings in the various metrics.

Mean Absolute Error: errors = [6,6,6,6,11] output =7

Mean Squared Error: errors = [36, 36, 36, 36, 121] output = 53

Root Mean Squared Error: errors = [36, 36, 36,36, 121] output = 7.28 (to 3sf)

As one can see the Mean Absolute Error has an error of 7, so close to the systematic error,
which could easily lead the user to believe that there is only a small discrepancy when in fact
there is a much larger error hiding. However this is far easier to visualize, on average we know

that there is a distance of 7 between our system and the true answer.

Mean Squared Error on the other hand has a higher weighting on the larger error even though
it is only one element. If we